skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Prisby, Rhonda D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Modulations of fluid flow inside the bone intramedullary cavity has been found to stimulate bone cellular activities and augment bone growth. However, study on the efficacy of the fluid modulation has been limited to external syringe pumps connected to the bone intramedullary cavity through the skin tubing. We report an implantable magnetic microfluidic pump which is suitable for in vivo studies in rodents. A compact microfluidic pump (22 mm diameter, 5 mm in thickness) with NdFeB magnets was fabricated in polydimethylsiloxane (PDMS) using a set of stainless-steel molds. An external actuator with a larger magnet was used to wirelessly actuate the magnetic microfluidic pump. The characterization of the static pressure of the microfluidic pump as a function of size of magnets was assessed. The dynamic pressure of the pump was also characterized to estimate the output of the pump. The magnetic microfluidic pump was implanted into the back of a Fischer-344 rat and connected to the intramedullary cavity of the femur using a tube. On-demand wireless magnetic operation using an actuator outside of the body was found to induce pressure modulation of up to 38 mmHg inside the femoral intramedullary cavity of the rat. 
    more » « less